Improved fermentation performance of a lager yeast after repair of its AGT1 maltose and maltotriose transporter genes.
نویسندگان
چکیده
The use of more concentrated, so-called high-gravity and very-high-gravity (VHG) brewer's worts for the manufacture of beer has economic and environmental advantages. However, many current strains of brewer's yeasts ferment VHG worts slowly and incompletely, leaving undesirably large amounts of maltose and especially maltotriose in the final beers. alpha-Glucosides are transported into Saccharomyces yeasts by several transporters, including Agt1, which is a good carrier of both maltose and maltotriose. The AGT1 genes of brewer's ale yeast strains encode functional transporters, but the AGT1 genes of the lager strains studied contain a premature stop codon and do not encode functional transporters. In the present work, one or more copies of the AGT1 gene of a lager strain were repaired with DNA sequence from an ale strain and put under the control of a constitutive promoter. Compared to the untransformed strain, the transformants with repaired AGT1 had higher maltose transport activity, especially after growth on glucose (which represses endogenous alpha-glucoside transporter genes) and higher ratios of maltotriose transport activity to maltose transport activity. They fermented VHG (24 degrees Plato) wort faster and more completely, producing beers containing more ethanol and less residual maltose and maltotriose. The growth and sedimentation behaviors of the transformants were similar to those of the untransformed strain, as were the profiles of yeast-derived volatile aroma compounds in the beers.
منابع مشابه
Maltose and maltotriose utilisation by group I strains of the hybrid lager yeast Saccharomyces pastorianus
Brewer's wort is a challenging environment for yeast as it contains predominantly α-glucoside sugars. There exist two subgroups of the lager yeast Saccharomyces pastorianus which differ in sugar utilisation. We performed wort fermentations and compared representative strains from both groups with respect to their ability to transport and ferment maltose and maltotriose. Additionally, we mapped ...
متن کاملThe temperature dependence of maltose transport in ale and lager strains of brewer's yeast
Lager beers are traditionally made at lower temperatures (6-14 degrees C) than ales (15-25 degrees C). At low temperatures, lager strains (Saccharomyces pastorianus) ferment faster than ale strains (Saccharomyces cerevisiae). Two lager and two ale strains had similar maltose transport activities at 20 degrees C, but at 0 degrees C the lager strains had fivefold greater activity. AGT1, MTT1 and ...
متن کاملCharacterization and functional analysis of the MAL and MPH Loci for maltose utilization in some ale and lager yeast strains.
Maltose and maltotriose are the major sugars in brewer's wort. Brewer's yeasts contain multiple genes for maltose transporters. It is not known which of these express functional transporters. We correlated maltose transport kinetics with the genotypes of some ale and lager yeasts. Maltose transport by two ale strains was strongly inhibited by other alpha-glucosides, suggesting the use of broad ...
متن کاملMolecular analysis of maltotriose transport and utilization by Saccharomyces cerevisiae.
Efficient fermentation of maltotriose is a desired property of Saccharomyces cerevisiae for brewing. In a standard wort, maltotriose is the second most abundant sugar, and slower uptake leads to residual maltotriose in the finished product. The limiting factor of sugar metabolism is its transport, and there are conflicting reports on whether a specific maltotriose permease exists or whether the...
متن کاملMolecular analysis of maltotriose active transport and fermentation by Saccharomyces cerevisiae reveals a determinant role for the AGT1 permease.
Incomplete and/or sluggish maltotriose fermentation causes both quality and economic problems in the ale-brewing industry. Although it has been proposed previously that the sugar uptake must be responsible for these undesirable phenotypes, there have been conflicting reports on whether all the known alpha-glucoside transporters in Saccharomyces cerevisiae (MALx1, AGT1, and MPH2 and MPH3 transpo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 75 8 شماره
صفحات -
تاریخ انتشار 2009